Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces
نویسنده
چکیده
We define higher-order analogs to the piecewise linear surface finite element method studied in [Dz88] and prove error estimates in both pointwise and L2-based norms. Using the Laplace-Beltrami problem on an implicitly defined surface Γ as a model PDE, we define Lagrange finite element methods of arbitrary degree on polynomial approximations to Γ which likewise are of arbitrary degree. Then we prove a priori error estimates in the L2, H1, and corresponding pointwise norms that demonstrate the interaction between the “PDE error” that arises from employing a finitedimensional finite element space and the “geometric error” that results from approximating Γ. We also consider parametric finite element approximations that are defined on Γ and thus induce no geometric error. Computational examples confirm the sharpness of our error estimates.
منابع مشابه
Sharply localized pointwise and W∞-1 estimates for finite element methods for quasilinear problems
We establish pointwise andW−1 ∞ estimates for finite element methods for a class of second-order quasilinear elliptic problems defined on domains Ω in Rn. These estimates are localized in that they indicate that the pointwise dependence of the error on global norms of the solution is of higher order. Our pointwise estimates are similar to and rely on results and analysis techniques of Schatz fo...
متن کاملLocalized pointwise error estimates for mixed finite element methods
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show tha...
متن کاملLocalized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems
Two types of pointwise a posteriori error estimates are presented for gradients of finite element approximations of second-order quasilinear elliptic Dirichlet boundary value problems over convex polyhedral domains Ω in space dimension n ≥ 2. We first give a residual estimator which is equivalent to ‖∇(u − uh)‖L∞(Ω) up to higher-order terms. The second type of residual estimator is designed to ...
متن کاملPointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates
This part contains new pointwise error estimates for the finite element method for second order elliptic boundary value problems on smooth bounded domains in RN . In a sense to be discussed below these sharpen known quasi–optimal L∞ and W 1 ∞ estimates for the error on irregular quasi–uniform meshes in that they indicate a more local dependence of the error at a point on the derivatives of the ...
متن کاملPointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem
In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in RN (N ≥ 2). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the L2 norm except for a logarithmic factor when the piecewise linear functions are u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2009